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We consider the analytical investigation of the heat current in the steady state of the quantum harmonic chain
of oscillators with alternate masses and self-consistent reservoirs. We analyze the thermal conductivity � and
obtain interesting properties: in the high temperature regime, where quantum and classical descriptions coin-
cide, � does not change with temperature, but it is quite sensitive to the difference between the alternate
masses; and contrasting with this behavior, in the low temperature regime, � becomes an explicit function of
the temperature, but its dependence on the masses difference disappears. Our results reinforce the message that
quantum effects cannot be neglected in the study of heat conduction in low temperatures.

DOI: 10.1103/PhysRevE.76.031116 PACS number�s�: 05.70.Ln, 05.40.�a, 05.45.�a, 44.10.�i

I. INTRODUCTION

Despite its fundamental importance for nonequilibrium
statistical physics, the complete understanding of the heat
conduction from first principles is still an open problem. For
example, the derivation of the phenomenological Fourier’s
law is still unknown, which states that the heat flow is
proportional to the local temperature gradient, J�x�
=−��T�x���T�x�; � is the thermal conductivity. After years
of study �see e.g., �1,2� for reviews�, the precise conditions in
microscopic models of interacting particles that lead to the
macroscopic Fourier’s law are still ignored. The detailed in-
vestigation of the mechanisms behind the heat conduction
�including other questions besides the derivation of the Fou-
rier’s law� involves considerable technical difficulties and
even contradictions in numerical simulations, a scenario that
makes the analysis of simple treatable analytical models a
problem of interest �more comments are presented, e.g., in
�3,4��.

Recently, the model of the harmonic chain of oscillators
with self-consistent stochastic thermal reservoirs at each site
has been revisited and rigorously analyzed �5� �this model
was previously proposed in �6,7��. The authors prove that the
Fourier’s law holds in such a model. They still prove that
there is a local thermal equilibrium and the heat conductivity
� is a constant �it does not depend on the temperature�. In
this simple model, the reservoirs at each site describe the
anharmonic degrees of freedom present in a more realistic
�and much more intricate� interaction. The “self-consistent”
condition means that there is no heat flow between an inner
reservoir and its site, i.e., the inner reservoirs do not inject
energy into the system. The quantum version of this model
�proposed in �8�� has been revisited quite recently in �9�. The
study of the quantum version is important to understand the

behavior of the thermal conductivity in the low temperature
regions, where a quantum description may introduce signifi-
cant changes. In particular, it is shown �for this quantum
model �8�� that the thermal conductivity becomes dependent
on the temperature.

In the present paper, also with the aim of understanding
the properties of the thermal conductivity of simple Hamil-
tonian models, we consider the quantum chain of harmonic
oscillators with reservoirs at each site and study, in detail, the
heat flow for the case of particles �oscillators� with different
masses �precisely, we take a chain with alternate masses—
details ahead�. The physical interest of models with unequal
masses is well known. We recall, first, a few examples of
analytical studies. The one-dimensional �1D� harmonic chain
with baths at the boundaries has been rigorously studied a
long time ago: first the version with equal masses �10�,
where it is proved that the heat current J is independent of
the system size N �the Fourier’s law holds if J�N−1�. In
sequel, versions with different masses have been treated in
�11,12�. In particular, for a random mass distribution, it is
proved that J�N−1/2 �13�. For the harmonic Fibonacci chain,
a model with the sequence of the particle masses given by
�mi � i=1, . . . ,N ;mi=m� or m�� according to the Fibonacci
sequence, it is shown that J��ln N�−1 �14�. Unfortunately,
these models do not obey Fourier’s law and the investigation,
in such case, is mainly related to the dependence of the heat
flow on the system size. Recently, we have analyzed a sys-
tem with unequal masses and normal conductivity �15�: the
harmonic chain with stochastic self-consistent reservoirs and
unequal masses. We show that the thermal conductivity does
not depend on temperature, but it is quite sensitive to the
difference between the masses of the particles. Turning to the
models treated by numerical simulations, there are many
other problems where the presence of particle with unequal
or alternate masses lead to interesting physical results: e.g., a
nontrivial steady state is obtained for the two-mass problem
in �16�; the relevance of the total momentum conservation
for the validity of Fourier’s law is investigated in a model
with alternate masses in �17�; a strange behavior for Fermi-

*afneto@fisica.ufmg.br
†hcfl@fisica.ufmg.br
‡emmanuel@fisica.ufmg.br

PHYSICAL REVIEW E 76, 031116 �2007�

1539-3755/2007/76�3�/031116�8� ©2007 The American Physical Society031116-1

http://dx.doi.org/10.1103/PhysRevE.76.031116


Pasta-Ulam chains with alternate masses in the steady state is
numerically shown in �18�.

Now, in the present work, we turn to the quantum version
of this harmonic chain with self-consistent reservoirs and
alternate masses. Using the techniques presented in �9,19�,
we derive a formula for the thermal conductivity which pre-
sents interesting new properties and shows that the quantum
effects are quite significant. Besides the explicit dependence
on temperature �that does not happen in the classical version,
but appears in the quantum model with equal masses�, we
show that, for very small temperatures, the difference be-
tween the masses, which is significant for the conductivity
behavior in high temperature, is wiped out. In short, our
results emphasize the significance of quantum effects in the
low temperature region, which indicates that, in some recent
approaches proposed to understand the heat mechanism and
involving classical models and the region of T→0 �see, e.g.,
�20��, the inclusion of quantum effects may give important
corrections.

The rest of the paper is organized as follows. In Sec. II we
introduce the model and the expressions for the heat cur-
rents. In Sec. III we analyze the steady heat current in the
self-consistent condition and derive the expression for the
thermal conductivity, which is studied in the low and high
temperature regimes in Sec. IV. Section V is devoted to the
final comments, and the Appendix to a technical point,
namely, the inversion of a tridiagonal matrix.

II. PRELIMINARIES: THE MODEL AND FORMALISM
FOR THE STEADY HEAT CURRENT

Now we introduce the model and, briefly, schematize the
derivation of the formula for the steady heat current as pre-
sented in �9�; there, the authors obtain a formalism to analyze
quantum harmonic lattices following a Ford-Kac-Mazur pro-
gram �21�. In a few words, the approach considers harmonic
lattices connected to baths modeled also as mechanical har-
monic systems with initial coordinates and momenta distrib-
uted according to some statistical distribution. The quantum
dynamical equations are solved and the steady properties are
obtained by taking stochastic distributions for the initial co-
ordinates of the reservoirs and the limit t→�. For clearness,
we will use, essentially, the same notation of �9�.

We consider a harmonic system which consists of a chain
�W� with each site coupled to a bath �B� described also by
harmonic interactions. The Hamiltonian of the chain and
baths is given by

H = 1
2 ẊTMẊ + 1

2XT�X

=HW + 	
i=1

N

HBi
+ 	

i=1

N

VBi
,

HW = 1
2 ẊW

T MWẊW + 1
2XW

T �WXW,

HBi
= 1

2 ẊBi

T MBi
ẊBi

+ 1
2XBi

T �Bi
XBi

,

VBi
= XW

T VBi
XBi

, �1�

M, MW, MBi
are diagonal matrices representing masses of the

particles in the entire system, chain, and baths, respectively;
N is the number of sites in the chain. The symmetric matrices
�, �W, �Bi

give the potential quadratic energies, and VBi
gives the interaction between the ith site of the chain and its
bath. X= �X1 ,X2 , . . . ,XNs

�T, where Xi is the position operator
of the ith particle, Ns is the number of elements in the entire

system. We still have Ẋ=M−1P, where Pr is the momentum
operator of the rth particle satisfying the commutation rela-
tions �Xr , Pl�= i�	rl. In fact, we will be more specific: we
will consider a one-dimensional harmonic chain with

HW = 	
l=1

N 
ml

2
Ẋl

2 +
m0

2

0

2Xl
2� + 	

l=1

N+1
m0

2

c

2�Xl − Xl−1�2, �2�

where m0
0
2 is the on-site potential strength constant; m0
c

2

is the interparticle potential strength; m0 is a constant with
unit of mass. We still consider ml=m1 if l is odd, ml=m2 if l
is even; and we take Dirichlet boundary conditions, i.e., X0
=XN+1=0.

The Heisenberg equations �giving the dynamic� for sys-
tem and baths are

MWẌW = − �WXW − 	
i

VBi
XBi

,

MBi
ẌBi

= − �Bi
XBi

− VBi

T XW. �3�

The procedure is to treat the equations of the baths as linear
inhomogeneous equations. Then, the solutions are plugged
back into the equation for the chain, and the initial conditions
of the baths are assumed to be distributed according to equi-
librium phonon distribution functions �with temperatures
properly chosen—details ahead�. All the reservoirs are taken
to be Ohmic, and the coupling to the reservoirs is given by a
dissipation constant �.

The stationary properties are obtained turning to the equa-
tions of motion, taking t→� and t0→−�, and manipulating
them by using Fourier transforms. As said, details are pre-
sented in �9� and references therein. For the heat current
from the lth reservoir into the chain we obtain

Jl = 	
m=1

N

�2�
−�

�

d

2��GW
+ �
��l,m�2

�


�
�f�
,Tl� − f�
,Tm�� ,

�4�

where

GW
+ �
� = 
− 
2MW + �W − 	

l

l
+�
��−1

,

MW =
m1

m2

�

mN

� ,
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�W = m0
c
2

2 + �2 − 1

− 1 2 + �2
�

� � − 1

− 1 2 + �2
� , �5�

with �2=
0
2 /
c

2. The self-energy matrix has only one nonva-
nishing element, �l

+�ll= i�
. The variable 
 appears with
the Fourier transform

X̃W�
� =
1

2�
�

−�

�

dtXW�t�ei
t,

etc. And f�
 ,Tl� is the phonon distribution function

f�
,Tl� =
1

exp��
/kBTl� − 1
. �6�

To proceed we consider the linear response regime with
the temperature difference �T= �T1−TN � �T= �T1+TN� /2. In
this situation, we may simplify the expression for Jl above by
expanding the phonon distribution functions �6� about the
mean temperature T to get

Jl = �2�
−�

�

d

�
3

�
� f�
,T��T	

m=1

N

��GW
+ �
��l,m�2�Tl − Tm� .

�7�

For the heat current inside the chain, from the site l to l
+1, in the linear response limit, we have

Jl,l+1 = −
m0
c

2�

�
�

−�

�

d


 �


2kBT
�2

cosech2
 �


2kBT
�

� 	
m=1

N

kBTm Im��GW
+ �
��l,m�GW

+ �
��l+1,m
* � , �8�

where * denotes the complex conjugate.

III. ANALYSIS OF THE STEADY HEAT CURRENT

To perform a detailed investigation of the steady heat cur-
rents of our specific model, according to the preceding sec-
tion, we need to know the matrix GW

+ �5� and the temperature
profile, which is determined by the self-consistent condition
Jl=0 for all inner sites, i.e. there is no heat flow between an
inner site and the reservoir connected to it.

To determine �GW
+ �
��l,m, we write �see Eq. �5��

GW
+ �
� =

Z−1

m0
c
2 , �9�

where Z is a tridiagonal �Jacobi� matrix

Z =
z1 − 1

− 1 z2 − 1

− 1 z3 − 1

− 1 � �

� zN−1 − 1

− 1 zN

� , �10�

with

zj�
� = 
2 + �2 −
mj

m0


2


c
2� −

i�


m0
c
2 , �11�

with mj =m1 for j odd, and mj =m2 for j even. There is a
general procedure to calculate the inverse of a tridiagonal
matrix �22�—we present the details for our specific case �10�
in the Appendix. We have

�Z−1�lm = clm�Z−1�lm,

clm =��
z2

z1

if l and m are odd,

�z1

z2

if l and m are even,

1 otherwise,

�12�

where Z is the tridiagonal matrix

Z =
z − 1

− 1 z �

� � − 1

− 1 z
�, z�
� = �z1�
�z2�
� ,

�13�

with inverse

�Z−1�lm = �
sinh��N − m + 1���sinh�l��

sinh���sinh��N + 1���
if m � l ,

sinh��N − l + 1���sinh�m��
sinh���sinh��N + 1���

if m � l ,

�14�

where � is given by

e� =
z

2
±�
 z

2
�2

− 1, e−� =
z

2
��
 z

2
�2

− 1, �15�

i.e., z=2 cosh �. Any of the two roots can be taken in �15�.
As said, the detailed computation of Z−1 is presented in the
Appendix.

For points in the bulk of the chain, i.e., far from the
boundaries �N→ � �, we have with a simple algebra

�GW
+ �lm =

�Z−1�lm

m0
c
2 �

clme−��l−m�

2m0
c
2 sinh���

, �16�

and we may choose � �15� such that Re����0. In what
follows, we will ignore the points close to the boundaries.
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To carry out the analysis of the heat currents, we still need
to know the temperature profile: it must be taken such that
Jl=0 for the inner points l, i.e., to assure the self-consistent
condition. For the classical harmonic chain it is rigourously
proved �5� that there is a unique profile �the linear one� that
leads to the self-consistent condition. As the quantum and
classical models coincide at high temperatures, this linear
profile is assumed for the quantum version with equal masses
in �9�: it is shown that the linear profile leads to Jl=0 for the
inner points �and it is also reobtained there by numerical
simulations�. Here we follow the same strategy �a direct deri-
vation of the temperature profile for the quantum models is
very intricate�: if we turn to the classical model with unequal
masses as treated in �15� �i.e., using the techniques devel-
oped by us—some of the authors and collaborators �23,24��,
we may easily find that the temperature profile for this clas-
sical version is the linear one—see the general derivation
given by Eqs. �22�–�25� presented in �23�, and compare with
Eqs. �16�–�18� in �15�. We remark that, in a finite system,
close to the boundaries, where the real thermal reservoirs are
linked, the temperature profile shall deviate from the linear
form �see �9� for more discussions�. We also recall that this
model involving the self-consistent condition does not allow
the inner baths to inject energy into the system, and so, the
inner reservoirs shall be understood as a mechanism of pho-
non scattering �i.e., in some sense they act as the anharmonic
degrees of freedom not present in the potential� and not as
real thermal reservoirs. It is also worth to recall that all of the
situations, and the heat flow in the system, shall change if we
leave the self-consistent condition and let the inner reservoirs
inject energy into the system—see �25�, for example, of sys-
tems with strange heat flows. In a recent work �26�, a quan-
tum chain system with baths at the boundaries is analyzed
and significant boundary effects are presented �see also �27�
for other interesting results in quantum chains�. But there,
the system has a small length and differs very much from our
problem: we are in the bulk of the system, far from the
boundaries �the length of our chain goes to infinite�.

Now, we take the linear temperature profile and show, for
our quantum version, that it leads to the self-consistent con-
dition Jl=0, for l in the bulk of the chain. Indeed, for l far
from the boundaries �and N→��, from �7� we essentially
have

Jl � 	
m=−�

�

�l − m���GW
+ �
��lm�2

= 	
m=−�

�

�clm�2
�e−��l−m��2

4m0
2
c

4 sinh2�
�l − m� .

We write m= l±k, with k=1,2 , . . . �for k=0, we have l−m
=0�. Then, in the sum we get

S1 = 	
m=−�

�

�clm�2�e−��l−m��2�l − m�

= 	
k=1

�

��cl,l−k�2e−2��l−�l−k���l − �l − k��

+ �cl,l+k�2e−2��l−�l+k���l − �l + k���

= 	
k=1

�

k��cl,l−k�2 − �cl,l+k�2�e−2�k = 0,

since cl,l−k=cl,l+k: see �12� and note that cl,r=cl,r±2=cl,r±2m,
∀l ,r ,m�Z.

Now we turn to the heat current inside the chain Jl,l+1.
From �8� and �16� we have

Jl,l+1 =
− �

8m0
c
2�i
�

−�

�

d




�sinh ��2
 �


2kBT
�2

cosech2
 �


2kBT
�

�	
m

kBTm�cl,mcl+1,m
* e−��l−m�e−�*�l+1−m� − c.c.� , �17�

where “c.c.” means the complex conjugate. We still intro-
duce the linear temperature profile

Tm = TL +
m − 1

N − 1
�TR − TL� ⇒ Tm = Tl +

m − l

N − 1
�TR − TL� .

We write TR and TL for the temperatures at the boundaries,
instead of TN and T1, respectively. With the expression for
Tm, we get in the sum �17� terms such as

	
m=−�

�

F�l,m� and 	
m=−�

�

�m − l�F�l,m� ,

with F�l ,m�= f�l ,m�− f*�l ,m�, where f�l ,m�
=cl,mcl+1,m

* e−��l−m�e−�*�l+1−m�. Again, we consider l far from
boundaries and N→�. To exploit the symmetry in the expo-
nential, we write

S2 � 	
m=−�

�

F�l,m� = 	
k=0

�

�F�l,l − k� + F�l,l + 1 + k�� .

To carry out the summation above, we note that we have for
k even cl,l−k=cl,l, cl+1,l+1+k=cl+1,l+1 and cl,l+1+k=1=cl+1,l−k. On
the other hand, for k odd we have cl,l+1+k=cl,l, cl+1,l−k
=cl+1,l+1, and cl,l−k=1=cl+1,l+1+k.

It is convenient to split the sum into the terms with k even
and with k odd. We have

S2 = S2
odd + S2

even

= ��cl,l − cl+1,l+1��e� + e−�� − c.c.�
e�+�*

e2��+�*� − 1
.

But, if we assume l odd �similar manipulation follows for l
even�

�cl,l − cl+1,l+1��e� + e−�� = �c1,1 − c2,2�z

= 
�z2

z1
−�z1

z2
��z1z2 = z2 − z1.

And, as we can see from �11�, z2−z1 is real,

z2 − z1 =
m1 − m2

m0


2


c
2 .

That is,

Im��cl,l − cl+1,l+1��e� + e−��� = 0 ⇒ S2 = 0. �18�
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Let us analyze S3=	m=−�
� �m− l�F�l ,m�. As before, we

write m= l−k and m= l+1+k, with k� �0,1 ,2 , . . . �, and split
the expression into terms with k even and k odd,

S3 = 	
k=0

�

��− k�F�l,l − k� + �k + 1�F�l,l + 1 + k��

= 	
k=0

�

F�l,l + 1 + k� + 	
k=0

�

k�F�l,l + 1 + k� − F�l,l − k�� .

After a considerable algebrism, we obtain

S3 = − 2��cl,l + cl+1,l+1��e� − e−�� − c.c.�
e�+�*

�e2��+�*� − 1�2

+ �2cl,le
−� − cl+1,l+1�e� − e−�� − c.c.�

e�+�*

e2��+�*� − 1
.

To make explicit the symmetry l↔ l+1, we write for the
second term above

�2cl,le
−� − cl+1,l+1�e� − e−�� − c.c.�

= ��cl,l + cl+1,l+1�e−� + cl,le
−� − cl+1,l+1e�� − c.c. �19�

Using that �cl,l−cl+1,l+1��e�+e−��−c.c.=0, from �18�, we
note that

�cl,le
� + cl,le

−� − cl+1,l+1e� − cl+1,l+1e−�� − c.c. = 0

⇒ �cl,le
−� − cl+1,l+1e� − c.c.� = �cl+1,l+1e−� − cl,le

� − c.c.�

⇒ �cl,le
−� − cl+1,l+1e� − c.c.�

= 1
2 �cl,le

−� − cl+1,l+1e� + cl+1,l+1e−� − cl,le
� − c.c.� .

We rewrite S3 as

S3 = �cl,l + cl+1,l+1��− sinh���e−��+�*�

sinh2�� + �*�
+

�e−� − sinh ��
2 sinh�� + �*�

�
− c.c. �20�

We remark that, in the particular case of masses m1=m2,
we have cl,l=cl+1,l+1=1, and so, after some algebraic manipu-
lations we have

S3�m1 = m2� =
sinh �* − sinh �

4 sinh2 �R
, �21�

where �R=Re���= ��+�*� /2. It leads to the same expression
of �9� �see Eq. �5.8� there in�, where the case of equal masses
was treated.

Finally, turning to the expression �17� for Jl,l+1, now we
have

Jl,l+1 = �−
�kB

8m0
c
2�i
�

−�

�

d




�sinh ��2
 �


2kBT
�2

�cosech2
 �


2kBT
�S3�
��TR − TL

N − 1
, �22�

with S3�
� given by �20�. In short, the Fourier’s law holds
with � given by the expression that multiplies �TR−TL� / �N
−1� in �22�.

In the next section we study the behavior of � as we
change the temperature.

IV. THE EFFECTS OF TEMPERATURE
ON THE THERMAL CONDUCTIVITY

We are mainly interested in the region of small tempera-
tures, where the difference between the quantum and the
classical description of the model may be significant.

As we have described in the preceding section, the differ-
ence in � for the quantum systems with equal and unequal
masses comes essentially from the factor �cl,l+cl+1,l+1� that
appears in the expression of S3�
�, see �20� and �21�. For
small temperatures, the main contribution to � comes from
small 
—see Eq. �22� �we give details below�. Hence, let us
investigate the factor �cl,l+cl+1,l+1� for small 
. Recall that

cl,l + cl+1,l+1 =�z1

z2
+�z2

z1
=

z1 + z2

z
, �23�

where zj is given by �11�. Thus, simple manipulations give us

z � �z1z2 = 2 + �2 −
1

2

m1 + m2

m0


2


c
2 −

i�


m0
c
2 + O�
3� ,

i.e., up to O�
2�, the expression of z becomes that of zj with
mj = �m1+m2� /2, i.e., z= �z1+z2� /2. Hence,

cl,l + cl+1,l+1 =
z1 + z2

z
= 2,

that is, our � becomes the same of a system with equal
masses, where the particle mass is �m1+m2� /2. In �9�, nu-
merical computations for small T in the quantum chain with
equal masses are carried out, and graphics ��T are plotted
�see Figs. 1 and 2 in �9��. We present a brief analytical study
which coincides with their results as T→0. From Eqs. �22�
and �20� we get

� =
�kB

16m0
c
2�i
�

−�

�

d

 �


2kBT
�2

cosech2
 �


2kBT
�

�
4m0
c

2i

�

sin2 �I cosh �R

sinh �R�cosh2 �R − cos2 �I�
,

where �I=Im���= ��−�*� / �2i�. As T→0,
cosech2��
 /2kBT��4e−��
�/kBT, and so

� = C1�
0

�

d

 �


2kBT
�2

e−�
/kBT

�
sin2 �I cosh �R

sinh �R�cosh2 �R − cos2 �I�

= C1�2�2�
0

�

d
e−�
�
2f�
� , �24�

where C1 is a constant depending on m0, 
c
2, �, etc., but not

on T; and �= �kBT�−1. In what follows, we will use the nota-
tion C even for different constants. Now we study the
asymptotic behavior of the equation above as �→�. We
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follow the procedure given by the Laplace method �28�. It
establishes that for a function such as

F��� = �
0

�

g�t�e−�h�t�dt ,

with h�t��h�0�, h��0�=0, and h��0��0 �i.e., h with a mini-
mum in t=0�, the asymptotic behavior of F��� for �→� is
determined by the minimum of h. In a general case, with
h�t�=h�0�+ 1

2 t2h��0�+ ¯ , g�t�=g�0�+ tg��0�+¯, and
simple manipulations, we have

F��� � g�0�
 �

2�h��0��
1/2

e−�h�0� + e−�h�0�O
1

�
� .

If g�0�=0, to determine the asymptotic behavior of F���, we
take the next term in the expression above, etc. From �24�, if
we write 
=u2, we obtain

� = C�2�
0

�

due−�u2�u5f�u2� . �25�

To examine f�u2�, we need to split the analysis into the cases
��0 and �=0. From �11� and z=2 cosh �, we have �recall-
ing that our analysis is around u2=
�0, the minimum of h
in the exponential term in �25��

2 cosh �R cos �I � 2 + �2 −
m̄

m0


2


c
2 � 2 + �2,

2 sinh �R sin �I � −
�

m0
c
2
 ,

where m̄= �m1+m2� /2. Therefore, f�
��C sin2 �I�C
2

=Cu4, where C is some constant. Hence,

� � C�2�
0

�

due−u2��u9 = C/�3.

That is, for ��0, we have ��CT3.
For �=0, again from �11� and z=2 cosh �, we have

2 cosh �R cos �I � 2 −
m̄

m0


2


c
2 � 2,

2 sinh �R sin �I � −
�

m0
c
2
, ⇒ sinh �R � sin �I � 
1/2.

Recalling the expression for f�
�,

f�
� =
sin2 �I cosh �R

sinh �R�cosh2 �R − cos2 �I�
�

cosh �R

sinh �R
� 
−1/2.

Therefore,

� � C�2�
0

�

due−u2��u5f�u2�

� C�2�
0

�

due−u2��u4 = C�2
 1

�
�5/2

.

That is, ��CT1/2, if �=0. Note that the C in � involves �,
m0, �m1+m2� /2, but not �m1−m2�, which appears in the ex-
pression of � for the classical version �15�. As the quantum
and classical versions shall coincide in the high temperature
regime, our previous computations show that considerable
changes appear with the temperature in the quantum model.
We give more comments ahead.

Let us investigate the high temperature region. From �22�,
we note that the contribution of large 
 for � goes to zero
exponentially fast as 
 increases. For bounded 
, we have

lim
T→�


 �


2kBT
�2

cosech2
 �


2kBT
� → 1,

and so, as T increases, � becomes a constant function on T.
In a previous work on the classical harmonic chain with

self-consistent stochastic reservoirs and alternate masses
�15�, using the approach developed in �23,24� and a pertur-
bative analysis, we show that, for weak coupling between the
neighbor sites, i.e., for 
c

2 small, and an interaction with
nonzero on-site potential, we have

� = �2m0
c
2�2�m1

−1m2
−1��
c

2�2 + �2��2
 1

m1
−

1

m2
�2��

+ 2�2
c
2�2 + �2�
 1

m1
+

1

m2
��−1

. �26�

It is interesting to note that, for a huge difference between
the masses m1 and m2, the behavior of � is determined by the
inverse of the square of the difference of masses. But if m1
=m2, this behavior becomes related to the inverse of the
mass, and not to the inverse of the square of the mass. In
other words, � is more sensitive to changes in the particle
masses for the system with alternate masses. As already men-
tioned, it is also interesting to note that such a behavior is
wiped out for the quantum system in a small temperature
region, where � depends on m1+m2 only. In short, large T,
��1/ �const+ �m1−m2�2�; small T, � does not depend on
�m1−m2�.

A detailed expression for � in the high temperature region
for the quantum chain with alternate masses requires a huge
algebrism and we will not present it here. But it is easy to see
that � depends on �m1−m2�2: we turn to the factor cl,l

+cl+1,l+1= �z1+z2��z1z2�−1/2 and write

z1 + z2 = 2z̄, z̄ � 
2 + �2 −
m1 + m2

2m0


2


c
2 − i

�


m0
c
2�,

�z1z2 = �
z̄ +
m2 − m1

2m0


2


c
2�
z̄ −

m2 − m1

2m0


2


c
2��1/2

= ��z̄2 − 
m2 − m1

2m0


2


c
2�2��1/2

,

z1 + z2

�z1z2

= 2�1 − 
m2 − m1

2m0


2


c
2�2

�z̄2�−1�−1/2

.

We also recall that, for the simpler case of equal masses, the
thermal conductivity for the classical and the quantum mod-
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els in the high temperature region are the same, as shown in
�9� by using the same approach for the heat current of that
adopted here.

V. FINAL COMMENTS

In this paper, we consider the investigation of the heat
current in the steady state of the quantum harmonic chain of
oscillators with alternate masses and self-consistent
reservoirs—the anharmonic interactions which lead to a nor-
mal thermal conductivity �i.e., to Fourier’s law� are repre-
sented, in this model, by the reservoirs connected to each
site. We use a recently proposed an approach for the study of
the heat current �9�, and investigate, in detail, the thermal
conductivity, presenting analytical results.

Models of unequal masses, as recalled in the introduction,
have been used in several works related to the analysis of
heat conduction, with important physical information. Here,
for this quantum chain of particle with alternate masses, we
show interesting properties of the thermal conductivity �: in
the high temperature regime, where the quantum and classi-
cal descriptions coincide, � is constant, i.e., it does not
change with temperature, but it is quite sensitive to the dif-
ference between the alternate masses �m1−m2�; however, in
the low temperature regime, � becomes a function of the
temperature T ���CT3 for an interaction with on-site poten-
tial; otherwise, ��CT1/2�, and more, the dependence on
�m1−m2� is wiped out. Note that the difference between sys-
tems with and without on-site potential is physically ex-
pected: the on-site potential inhibits the heat transport, and
so, decreases the thermal conductivity.

In a few words, our results reinforce the message that
quantum effects cannot be neglected in the study of heat
conduction in low temperatures.
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APPENDIX: INVERSE OF THE TRIDIAGONAL MATRIX

We start from the formula for the inverse of a general
tridiagonal matrix

A =
b1 c1 0 0

a2 b2 c2

0 a3 b3 c3

a4 � �

� bn−1 cn−1

0 an bn

� . �A1�

In �22� it is proved, for �ij = �A−1�ij, that

� j j = 
bj − ajcj−1
zj−2

zj−1
− aj+1cj

yj+2

yj+1
�−1

, �A2�

for j=1,2 , . . . ,n, and

�ij = �− ci
zi−1

zi
�i+1,j if i � j ,

− ai
yi+1

yi
�i−1,j if i � j ,

�A3�

where zj and yj are defined according the recurrence relations

zi = bizi−1 − aici−1zi−2, z0 = 1, z1 = b1,

yj = bjyj+1 − aj+1cjyj+2, yn+1 = 1, yn = bn,

with i=1,2 , . . . ,n, and j=n−1,n−2, . . . ,1.
In our specific problem we have ci=aj =−1, ∀i , j; bj =b1 if

j is odd, and bj =b2 if j is even.
Let us consider first the simpler case bj =b, ∀j, related to

the problem of equal masses, since we will need it. In this
case, we will denote the �A1� matrix by A�b�. Now, the
recurrence relations above become

zi = bzi−1 − zi−2, z0 = 1, z1 = b,

yj = byj+1 − yj+2, yn+1 = 1, yn = b .

Defining xi�yn+1−i, we have x0=yn+1=1, x1=yn=b, and xi
=bxi−1−xi−2. Thus, the recurrence relation for xi is the same
one of zi.

Denoting by D j�b� the determinant of the A�b� matrix of
size j� j, it is easy to see �e.g., by induction� that D j�b�
follow the same recurrence relation of zj, namely, D j�b�
=bD j−1�b�−D j−2�b� �define first D0�b��1�. It follows that,
if b�2, then D j�b��0, and so A is invertible. We have the
following:

Lemma 1. For the n�n matrix A�b�, we have

Dn�b� =
sinh��n + 1���

sinh �
,

where

e� =
b ± �b2 − 4

2
. �A4�

Proof. The recurrence relation Dn�b�=bDn−1�b�−Dn−2�b�
reminds us that a second-order differential equation with
constant coefficients f =bf�− f�, whose solutions are e±�x, �
to be determined. If we try to write Dn�b� as e�n and e−�n,
from the recurrence relation, we obtain the restriction for e�

given by the formula �A4� above. Moreover, if we write
Dn�b�=c1e�n+c2e−�n, with �say, the boundaries condition�
D1�b�=b and D2�b�=b2−1, we find c1 and c2 which leads to
the formula of the lemma. �

Theorem 1. Let A�b� be a N�N matrix, with bj =b�2.
Then A�b� is invertible and

�A−1�l,m =�
Dl−1DN−m

DN
if m � l ,

Dm−1DN−l

DN
if m � l .

�A5�
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Proof. It follows from the general formulas for �ij, �A2�
and �A3�, restricted to this special case, from the observation
that zj and D j�b� have the same recurrence relation, and
some algebrism. �

Now we turn to the case of our interest, the matrix with
alternate masses, i.e., ai=cj =−1 and bj =b1 if j is odd and

bj =b2 if j is even. We will denote this matrix by Ã�b1 ,b2�.
For simplicity, we will be restricted to the cases of Ã in a
N�N matrix, with N odd �then, bN=b1�. Now we have

z̃i = biz̃i−1 − z̃i−2, z̃0 = 1, z̃1 = b1,

ỹ j = bjỹ j+1 − ỹ j+2, ỹn+1 = 1, ỹn = b1,

again with i=1,2 , . . . ,N, and j=N−1,N−2, . . . ,1. For odd

N, we have x̃j � ỹn+1−j = z̃ j. It follows then that D̃j�b1 ,b2� �the

determinant of a j� j Ã�b1 ,b2� matrix� and z̃ j have the same

recurrence relation, namely, D̃k=bkD̃k−1− D̃k−2 �again, we de-

fine D̃0=1�. We can obtain a relation between the determi-

nant of the matrix with alternate masses D̃k�b1 ,b2� and the
determinant of the specific matrix with equal masses
Dk��b1b2�. We have the following lemma.

Lemma 2. We have

D̃k�b1,b2� = ��b1

b2
Dk��b1b2� if k is odd,

Dk��b1b2� if k is even.

Proof. It follows by induction and simple manipula-
tions. �

Finally, let us calculate Ã−1.
From the formulas �A2� and �A3�, and from the recur-

rence relations, it follows that

�Ã−1�ij = �
z̃i−1ỹ j+1

z̃ jỹ j+1 − z̃ j−1ỹ j+2

if i � j ,

z̃ j−1ỹi+1

z̃ j−1ỹ j − z̃ j−2ỹ j+1

if i � j ,

�A6�

and we have the same relations for �A−1�ij, but, of course,

with its own zj and yj terms. We have seen that z̃ j = D̃j for Ã,

zj =D j for A, and lemma 2 gives us the relation between D̃j
and D j. Then, using �A5� it is easy to prove the following
result.

Theorem 2. We have

�Ã−1�ij =��
b2

b1
�A−1�ij if i and j are odd,

�b1

b2
�A−1�ij if i and j are even,

�A−1�ij otherwise.

�A7�
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